In my searches i have found some info. Just nothing that explains what is truly better about one spark plug over another.
I did find this info on a MFR site that i found at least somewhat useful
Found out that your spark plugs need to be at at least 450 degrees C up to 850 C to operate corectly and self clean like they are supposed to.
Gapping
Since the gap size has a direct affect on the spark plug's tip temperature and on the voltage necessary to ionise (light) the air/fuel mixture, careful attention is required. While it is a popular misconception that plugs are pre-gapped from the factory, the fact remains that the gap must be adjusted for the vehicle that the spark plug is intended for. Those with modified engines must remember that a modified engine with higher compression or forced induction will typically require a smaller gap settings (to ensure ignitability in these denser air/fuel mixtures). As a rule, the more power you are making, the smaller the gap you will need.
A spark plug's voltage requirement is directly proportionate to the gap size. The larger the gap, the more voltage is needed to bridge the gap. Most experienced tuners know that opening gaps up to present a larger spark to the air/fuel mixture maximises burn efficiency. It is for this reason that most racers add high power ignition systems. The added power allows them to open the gap yet still provide a strong spark.
With this mind, many think the larger the gap the better. In fact, some aftermarket ignition systems boast that their systems can tolerate gaps that are extreme. Be wary of such claims. In most cases, the largest gap you can run may still be smaller than you think
Heat Range
With modified engines (those engines that have increased their compression) more heat is a by-product of the added power that normally comes with increased compression. In short, select one heat range colder for every 75-100 hp you add, or when you significantly raise compression. Also remember to retard the timing a little and to increase fuel enrichment and octane. These tips are critical when adding forced induction (turbos, superchargers or nitrous kits), and failure to address ALL of these areas will virtually guarantee engine damage.
An engine that has poor oil control can sometimes mask the symptom temporarily by running a slightly hotter spark plug. While this is a "Band-Aid" approach, it is one of the only examples of when and why one would select a hotter spark plug.
Using "racing" spark plugs
Be cautious! In reality, most "racing" spark plugs are just colder heat ranges of the street versions of the spark plug. They don't provide any more voltage to the spark plug tip! Their internal construction is no different than most standard spark plugs.
While certain spark plugs are better suited to certain applications (and we're happy to counsel you in the right direction) we try to tell people that are looking to "screw in" some cheap horsepower that, in most cases, spark plugs are not the answer.
To be blunt, when experienced tuners build race motors, they select their spark plugs for different reasons: to remove heat more efficiently, provide sufficient spark to completely light all the air/fuel mixture, to survive the added stresses placed upon a high performance engine's spark plugs, and to achieve optimum piston-to-plug clearance.
Some of these "specialised racing plugs" are made with precious metal alloy centre/ground electrodes or fine wire tips or retracted-nose insulators. Again, these features do not necessarily mean that the spark plug will allow the engine to make more power, but these features are what allow the spark plug to survive in these tortuous conditions. Most racers know screwing in a new set of spark plugs will not magically "unlock" hidden horsepower.
Installing spark plugs
Torque is one of the most critical aspects of spark plug installation. Torque directly affects the spark plugs' ability to transfer heat out of the combustion chamber. A spark plug that is under-torqued will not be fully seated on the cylinder head, hence heat transfer will be slowed. This will tend to elevate combustion chamber temperatures to unsafe levels, and pre-ignition and detonation will usually follow. Serious engine damage is not far behind.
An over-torqed spark plug can suffer from severe stress to the Metal Shell which in turn can distort the spark plug's inner gas seals or even cause a hairline fracture to the spark plug's insulator...in either case, heat transfer can again be slowed and the above mentioned conditions can occur.
The spark plug holes must always be cleaned prior to installation, otherwise you may be torquing against dirt or debris and the spark plug may actually end up under-torqued, even though your torque wrench says otherwise. Of course, you should only install spark plugs in a cool engine, because metal expands when its hot and installation may prove difficult. Proper torque specs for both aluminium and cast iron cylinder heads are listed below.
Torque Settings Specifications Table
Spark plug type (Thread Diameter)
Cast Iron Cylinder Head
Flat seat type (with gasket)
18 mm ø (25.3 ~ 32.5 lb-ft)
14 mm ø (18.0 ~ 25.3 lb-ft)
12 mm ø (10.8 ~ 18.0 lb-ft)
10 mm ø (7.2 ~ 10.8 lb-ft)
Aluminium Cylinder Head
18 mm ø (25.3 ~ 32.5 lb-ft)
14 mm ø (18.0 ~ 21.6 lb-ft)
12 mm ø (10.8 ~ 14.5 lb-ft)
10 mm ø (7.2 ~ 8.7 lb-ft)
Using high power ignition systems
Many of the more popular aftermarket ignition systems are of the capacitive discharge type. They store voltage, or accumulate it, until a point at which a trigger signal allows release of this more powerful spark. Companies like Mallory, MSD, Crane and Accel, to name a few, offer such systems.
They affect spark plugs in that they allow the gaps to be opened up to take advantage of the increased capacity. The theory is that the larger and the more intense the spark you are able to present to the air/fuel mixture, the more likely you will be to burn more fuel, and hence the more power you will make.
We encourage the use of such systems, but only on modified or older non-computer controlled vehicles.
In reality, computer controlled vehicles do such a good job of lighting off the air/fuel mixture (as evidenced by the ultra-low emissions), added ignition capacity would do little to burn more fuel since the stock configuration is doing such a good job. Older non-computer controlled vehicles or those that have been modified with higher compression or boosted (nitrous, turbo, supercharged) engines can certainly take advantage of a more powerful ignition system.
Some Marketing Garb i found.
Wich all point to the platinum be the better choice or a colder iridium plug posibly